1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
| from transformers import AutoModelForCausalLM, AutoTokenizer; #Loading the Model and Tokenizer
revision_id = "fe8a4ea1ffedaf415f4da2f062534de366a451e6" #load the TinyLlama/TinyLlama-1.1B-Chat-v1.0
model = AutoModelForCausalLM.from_pretrained(
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
revision=revision_id,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
);
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0", revision=revision_id); #load the tokenizer from the model
user_input = "How much is a gazillion?"; # create a prompt for the model
user_input_as_tokens = tokenizer(user_input, return_tensors="pt").input_ids.to(model.device); # Converting Prompt To List of Tokens
model_output = model.generate(input_ids=user_input_as_tokens, max_new_tokens=50); # generate method present inside the model object
print(tokenizer.decode(model_output[0]));
user_input = "How much is a gazillion?<|assistant|>";
user_input_as_tokens = tokenizer(user_input, return_tensors="pt").input_ids.to(model.device);
model_output = model.generate(input_ids=user_input_as_tokens, max_new_tokens=50);
print(tokenizer.decode(model_output[0]));
print(user_input_as_tokens);
for id in user_input_as_tokens[0]:
print(tokenizer.decode(id));
for id in model_output[0]:
print(tokenizer.decode(id));
print(model_output[0]);
print(tokenizer.decode(29900));
print(tokenizer.decode(29892));
user_input = "What is a gazebo? <|assistant|>";
user_input_as_tokens = tokenizer(user_input, return_tensors="pt").input_ids.to(model.device);
print(user_input_as_tokens);
user_input = "Which country is indigenous to gazelles? <|assistant|>";
user_input_as_tokens = tokenizer(user_input, return_tensors="pt").input_ids.to(model.device);
print(user_input_as_tokens);
print(tokenizer.decode(12642));
revision_id = "0a67737cc96d2554230f90338b163bc6380a2a85"
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
revision=revision_id,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
);
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", revision=revision_id);
print(tokenizer.decode(12642));
revision_id = "fe8a4ea1ffedaf415f4da2f062534de366a451e6"
model = AutoModelForCausalLM.from_pretrained(
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
revision=revision_id,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
);
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0", revision=revision_id);
print(tokenizer.decode(12642));
revision_id = "0a67737cc96d2554230f90338b163bc6380a2a85"
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
revision=revision_id,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
);
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", revision=revision_id);
print(tokenizer.decode(12642));
print(tokenizer.decode(12652));
revision_id = "fe8a4ea1ffedaf415f4da2f062534de366a451e6"
model = AutoModelForCausalLM.from_pretrained(
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
revision=revision_id,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
);
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0", revision=revision_id);
print(tokenizer.decode(12642));
print(tokenizer.decode(12652));
|